Scoliosis

SPONSORED ADVERTISEMENT

ANAESTHETIC PRACTICE MANAGEMENT

Designed for Anaesthetists by Anaesthetist

Nova streamlines your anaesthetic practice with expert management, billing and financial services – so you can focus on what truly matters.


{}


Scoliosis

Pasted%20image%2020240314171003.png

Introduction

Definition

  • Scoliosis is a three-dimensional deformity of the vertebral column characterised by a lateral curvature ≥ 10° measured by the Cobb method on an upright postero-anterior radiograph, usually accompanied by vertebral rotation.
  • Kyphoscoliosis denotes combined coronal and sagittal deformity and confers greater pulmonary compromise.

Epidemiology & Natural History

  • Adolescent idiopathic scoliosis (AIS) accounts for ~80 % of cases and has a female predominance (≈3:1). Curve progression risk increases with growth potential (Risser < 2, open triradiate cartilage) and Cobb angle > 30°.
  • Early-onset scoliosis (< 10 yr) carries a higher incidence of restrictive lung disease and pulmonary hypertension in adulthood.

Aetiology & Classification

Category Examples Key Anaesthetic Issues
Idiopathic
• Infantile (< 3 yr)
• Juvenile (3–10 yr)
• Adolescent (10 yr–skeletal maturity)
Usually otherwise healthy Large blood loss, difficult positioning
Neuromuscular Cerebral palsy, Duchenne muscular dystrophy (DMD), spinal muscular atrophy Aspiration risk, cardiomyopathy (DMD), severe restrictive lung disease
Congenital Hemivertebrae, failure of segmentation, spinal dysraphism Associated renal & cardiac anomalies, difficult airway
Syndromic Marfan syndrome, neurofibromatosis, osteogenesis imperfecta Aortopathy, dural ectasia, brittle bones
Degenerative (adult) Osteoarthritis, osteoporosis Elderly physiology, anticoagulation
Other Post-traumatic, infective (TB), neoplastic Sepsis optimisation, metastatic disease

Indications for Surgical Correction

  • Progressive thoracic curve > 50 ° or lumbar curve > 40 ° despite bracing.
  • Significant coronal or sagittal imbalance causing pain or cardiopulmonary impairment.
  • Rapid progression (> 10 ° yr⁻¹) in skeletally immature patients.

Anaesthetic Challenges in Major Spinal Fusion

Domain Key Considerations
Respiratory Restrictive pattern (↓FVC, ↓FEV₁). Cobb > 60 ° predicts impaired gas transfer; Cobb > 80 ° → nocturnal hypoventilation; Cobb > 100 ° → chronic hypercapnia & pulmonary hypertension.
Cardiovascular Mitral valve prolapse (AIS), dilated cardiomyopathy (DMD), systemic hypertension (NF1). Echo ± cardiology review if symptomatic or neuromuscular disease.
Airway Difficult intubation with cervical/thoracic curves; pre-op imaging if atlanto-axial instability suspected.
Positioning (prone) Pressure injury, ocular perfusion (POVL), venous air embolism (VAE); use Jackson or Wilson frame to avoid abdominal compression.
Blood Loss Multilevel osteotomies & muscle dissection → average 20–80 mL kg⁻¹; multimodal blood-conservation (high-dose tranexamic acid, cell salvage, controlled hypotension).
Neuro-monitoring Somatosensory evoked potentials (SSEP) & transcranial motor evoked potentials (tcMEP); avoid long-acting neuromuscular blockers, maintain MAP ≥ 70 mmHg during instrumentation.
Pain & ERAS Severe early nociceptive pain plus neuropathic component; multimodal opioid-sparing regimen improves mobilisation and length of stay.

Pre-operative Assessment & Optimisation

History & Examination

  • Exercise tolerance, orthopnoea, sleep-disordered breathing.
  • Document baseline neuro-status and functional handgrip (wake-up test ability).
  • Screen for difficult airway and syndromic features.

Investigations (minimum)

Test Thresholds warranting further work-up
Spirometry (FEV₁ & FVC) FVC < 50 % predicted → anaesthesia + respiratory review
Chest radiograph Measure Cobb; Cobb > 60 ° → arterial blood gas (ABG) & full pulmonary function tests (PFTs)
ABG PaCO₂ > 45 mmHg → plan postoperative ventilation/ICU
Echocardiogram All neuromuscular scoliosis or clinical signs of cardiomyopathy/pulmonary hypertension
Laboratory FBC, coagulation, renal profile, type & screen (2 units on standby)

Optimisation

  1. Respiratory: Treat infections; bronchodilators for reversible obstruction; nightly non-invasive ventilation (if chronic hypercapnia); chest physiotherapy & incentive spirometry.
  2. Cardiac: Optimise heart failure, beta-blockade or ACE-is; cardiology review for DMD.
  3. Nutrition: Aim albumin > 30 g L⁻¹; high-protein supplements.
  4. Haematology: Treat iron-deficiency; consider erythropoietin for Hb < 12 g dL⁻¹.
  5. Counselling: Explain neuro-monitoring, potential need for staged surgery, postoperative ventilation and analgesia plan.

Intra-operative Management

Monitoring & Access

  • Standard ASA monitors + invasive arterial pressure, large-bore peripheral IV × 2, ± central line if anticipated > 1 blood volume loss.
  • Bispectral index (BIS) or processed EEG to titrate total intravenous anaesthesia (TIVA).
  • Cell salvage with leucocyte filter; antifibrinolytic infusion

Anaesthetic Technique

Aspect Current Evidence-based Recommendation
Induction Propofol (2–3 mg kg⁻¹) ± short-acting opioid; single intubating dose of rocuronium (0.6 mg kg⁻¹) is acceptable—reverse with sugammadex before baseline tcMEP; alternatives: no relaxant if difficult airway predicted.
Maintenance TIVA (propofol 100-150 μg kg⁻¹ min⁻¹ + remifentanil 0.1–0.3 μg kg⁻¹ min⁻¹) minimises tcMEP suppression; inhalational ≤ 0.5 MAC with propofol infusion is acceptable. Dexmedetomidine 0.3–0.7 μg kg⁻¹ h⁻¹ reduces propofol dose and opioid requirements without clinically significant SEP changes.
Blood-sparing Tranexamic acid 30 mg kg⁻¹ loading over 15 min, then 10 mg kg⁻¹ h⁻¹ (high-dose 100 mg kg⁻¹ + 10 mg kg⁻¹ h⁻¹ yields greatest reduction but uncertain safety—reserve for high-risk cases).
Controlled Hypotension Target MAP 65–70 mmHg during exposure; raise to ≥ 70 mmHg for instrumentation/osteotomy and ≥ 80 mmHg for neuro-deficit or spinal cord injury.
Fluids Balanced crystalloid 3–4 mL kg⁻¹ h⁻¹; albumin or viscoelastic-guided coagulation products to maintain ROTEM target values.
Temperature Forced-air warming, fluid warmers; core T° > 36 °C to preserve evoked potentials.

Positioning (Prone)

  • Eyes free of pressure, head neutral, abdomen off table to limit venous engorgement.
  • Padding of chest, iliac crests, knees and elbows; frequent checks after repositioning.
  • Document eyes checks hourly to mitigate postoperative visual loss.

Neuro-monitoring Response Algorithm

Event Immediate Actions
tcMEP/SSEP amplitude ↓ > 50 % ↑ MAP to ≥ 85 mmHg; normalise Hb & oxygenation; check anaesthetic depth; exclude mechanical causes (distraction rod, hypotension, hypothermia); consider wake-up test.

Post-operative Care

Immediate (0–24 h)

  • Extubate in theatre or ICU depending on lung function, blood loss and neuromuscular disease.
  • Haemodynamic goals: MAP ≥ 70 mmHg (≥ 80 mmHg if intra-operative cord compromise).
  • Neuro-checks: motor power & sensation q30 min (6 h) → q1 h (24 h).
  • Analgesia: multimodal regimen
    • Ketamine 0.25 mg kg⁻¹ h⁻¹ (24 h)
    • Dexmedetomidine 0.3–0.5 μg kg⁻¹ h⁻¹ (sedation score ≤ -2)
    • Acetaminophen 15 mg kg⁻¹ 6-hourly
    • Reduced-dose opioid PCA (morphine 0.02 mg kg⁻¹ demand, lock-out 8 min)
    • Erector spinae plane block (ESPB) with 0.375 % ropivacaine 20 mL side⁻¹ lowers early NRS and morphine use.
  • VTE prophylaxis: intermittent pneumatic compression intra-op → LMWH 12–24 h post-op once haemostasis secured; continue until full ambulation.

Ongoing (Day 1–3)

  • Transition to oral multimodal analgesia (paracetamol, tramadol/controlled-release oxycodone ± NSAID if surgeon agrees).
  • Physiotherapy: sit-to-stand on Day 1, ambulation Day 2.
  • Monitor ileus, urinary retention, wound drainage, SIADH (in neuromuscular disease).

Complications & Prevention

Complication Prevention & Early Detection
Massive blood loss High-dose TXA, cell salvage, viscoelastic-guided transfusion
Hypothermia Active warming, warmed fluids
POVL Padding, keep head neutral, limit anaemia/hypotension
VTE Early mobilisation, mechanical + LMWH prophylaxis
Airway oedema Judicious fluids, leak test before extubation
Neurological injury Continuous SSEP/tcMEP, maintain perfusion, prompt wake-up test
Chronic pain Intra-operative ketamine & dexmedetomidine, ESPB, early physiotherapy

Analgesic Techniques Summary

Technique Evidence & Caveats
ESPB RCTs show ↓ opioid by ~30 % first 24 h; safe when performed pre-incision.
Intrathecal Morphine (3-5 μg kg⁻¹) Excellent analgesia but respiratory monitoring ≥ 24 h.
Wound catheters Simple; infection risk minimal with ≤ 48 h dwell.
Dexmedetomidine infusion Useful adjunct but prolongs sedation at doses > 0.7 μg kg⁻¹ h⁻¹.
Ketamine infusion Superior to dexmedetomidine for opioid-sparing; avoid in psychosis.
NSAIDs Controversial effect on fusion; short-course ketorolac (≤ 72 h) appears safe.

Risk-mitigation Checklist

  1. Two cross-matched units immediately available.
  2. TXA drawn-up before knife-to-skin.
  3. Neuromonitoring baseline established before instrumentation.
  4. Eye checks & pressure points logged hourly.
  5. Wake-up test protocol printed and available.
  6. Post-op ICU bed confirmed.
  7. Multidisciplinary huddle (surgeon, anaesthetist, neuro-physiologist, nursing) before induction.

Pasted image 20240906170651.png

View or edit this diagram in Whimsical.

Paediatric Scoliosis

Anaesthetic Concerns

(a) Respiratory

  • Progressive restrictive pattern → ↓ forced vital capacity (FVC) & total lung capacity.
    • FVC < 40 % predicted or Cobb > 90 ° strongly predicts need for postoperative ventilation.
    • Spine surgery may transiently reduce PFTs by up to 60 % with recovery over 1–2 months.
  • ↓ Chest-wall compliance, V/Q mismatch → chronic hypoxaemia.
  • Hypercapnia (PaCO₂ > 45 mmHg) indicates advanced disease and correlates with pulmonary hypertension (PH).

(b) Cardiovascular

  • Chronic hypoxia ± sleep-disordered breathing → PH → right-ventricular hypertrophy/failure.
  • Up to 30 % of idiopathic cases have valvular abnormalities; congenital heart disease incidence ≈ 4 %. Cardiac lesions are more common in males and thoracolumbar curves.

Common Problems

Domain Key Points Practical Implications
Respiratory FVC & VC fall with curve severity; FVC < 40 % predicted → high likelihood of postoperative ventilation; lung volumes may fall another 40 % immediately post-fusion and normalise over 2 months. Plan elective ICU, consider postoperative non-invasive ventilation; pre-op airway clearance.
Cardiovascular ↑ pulmonary vascular resistance independent of curve size; vigilance for valvular lesions & congenital heart disease Baseline ECG & echo; optimise PH/treat heart failure.
Neurological Baseline deficits variable; risk of cord injury during correction. Document exam; consent for wake-up test.
Neuromuscular aetiology DMD & other myopathies → cardiomyopathy, respiratory weakness, anaesthesia-induced rhabdomyolysis (AIR) Avoid succinylcholine & volatile agents; use TIVA; anticipate prolonged ventilation.
Nutrition Chronic illness ± rapid growth may cause malnutrition. Pre-op dietetic input; albumin > 30 g L⁻¹.

Peri-operative Issues & Strategies

Phase Key Actions
Pre-operative • Full cardiorespiratory work-up (PFT, ABG if Cobb > 60 ° or FVC < 50 %).
• Echo for all neuromuscular curves or murmurs.
• Optimise respiratory muscle training, treat infections, initiate nocturnal BiPAP if chronic hypercapnia.
• Bloods: FBC, coagulation, group & screen (≥ 2 units ready).
Induction & Maintenance • TIVA (propofol–remifentanil) ± adjunct dexmedetomidine 0.3–0.6 µg kg⁻¹ h⁻¹ preserves SEP/MEP.
• One intubating dose of rocuronium acceptable; reverse with sugammadex before baseline tcMEP.
• Neuromuscular disease: omit muscle relaxant, avoid volatile agents & succinylcholine (AIR risk).
Position (prone) Jackson/Wilson frame; free abdomen; eye checks hourly.
Spinal cord protection Continuous SSEP/tcMEP; maintain MAP ≥ 70 mmHg (≥ 80 mmHg if signal loss).
Blood conservation TXA 30 mg kg⁻¹ load → 10 mg kg⁻¹ h⁻¹ infusion; cell salvage.
Analgesia Multimodal regimen (see ERAS protocol); ESPB reduces 24-h opioid by ≈ 30 %.

Enhanced Recovery After Surgery (ERAS): Red Cross War Memorial Children’s Hospital Pain Protocol

  • The protocol below integrates recent RCT data on ketamine, gabapentin and ESPB to optimise opioid-sparing while maintaining compatibility with neuro-monitoring.

Pre-operative

Team Intervention
Orthopaedic Gabapentin 15 mg kg⁻¹ PO night before & morning of surgery, then 8-hourly (target 10 mg kg⁻¹ q8 h). Pre-/post-fusion gabapentin halves early opioid use and pain scores.
Anaesthesia Counsel patient/family; assess PCA suitability; provide information sheet.

Intra-operative

Step Drug & Dose
Loading analgesics Paracetamol 20 mg kg⁻¹ IV; morphine 0.1–0.2 mg kg⁻¹ IV (after baseline MEP).
Adjuvants (post-monitoring) Ketamine infusion 0.25–0.35 mg kg⁻¹ h⁻¹ (supported by 2022 meta-analysis showing 25 % opioid reduction).
Clonidine 1–2 µg kg⁻¹ IV or switch to dexmedetomidine 0.3–0.6 µg kg⁻¹ h⁻¹.
Regional Bilateral ultrasound-guided ESPB before closure: bupivacaine 3 mg kg⁻¹ total (0.5 mL kg⁻¹ side⁻¹) + clonidine 1 µg kg⁻¹.
PONV prophylaxis Dexamethasone 0.15 mg kg⁻¹ IV + ondansetron 0.15 mg kg⁻¹ IV.

Post-operative (ICU Day 0)

Medication Schedule
Paracetamol 15 mg kg⁻¹ IV q6 h.
Clonidine 1–3 µg kg⁻¹ PO q8 h or dexmedetomidine 0.3–0.5 µg kg⁻¹ h⁻¹ (avoid Ramsay > 4).
Gabapentin Continue 3–5 mg kg⁻¹ PO q8 h → titrate to target 10 mg kg⁻¹ q8 h.
Ketamine 0.25–0.35 mg kg⁻¹ h⁻¹ for 24 h, then wean.
Morphine PCA: background 0–0.5 mL h⁻¹; bolus 20 µg kg⁻¹; lock-out 5 min.
PONV Ondansetron 0.15 mg kg⁻¹ IV q8 h.
Others Lactulose 0.5 mL kg⁻¹ PO q12 h; early physiotherapy & caregiver distraction techniques.

Ward Days 1–3

  • Pain service: taper PCA, introduce ibuprofen 10 mg kg⁻¹ q8 h once haemostasis & renal function normal.
  • Physiotherapy: edge-of-bed mobilisation Day 1; standing & walking Day 2 (coordinate timing with oral analgesic dosing)

Discharge (≈ Day 3–5)

Drug Dose & Duration
Paracetamol 15 mg kg⁻¹ PO q6 h.
Ibuprofen 10 mg kg⁻¹ PO q8 h.
Gabapentin 10 mg kg⁻¹ PO q8 h × 2 weeks, then taper.
Tramadol (prn) 1–2 mg kg⁻¹ PO q6 h.

Key Points for Muscular Dystrophy

  1. Avoid succinylcholine and minimise/omit volatile agents–high risk of AIR with hyperkalaemic arrest.
  2. Use non-depolarising relaxants titrated to nerve stimulator; reverse with sugammadex 2 mg kg⁻¹.
  3. Post-operative ventilation likely when FVC < 40 % predicted or cardiomyopathy present; plan elective ICU.

Links



References:

  1. Hudec J, Prokopová T, Kosinová M, Gál R. Anesthesia and Perioperative Management for Surgical Correction of Neuromuscular Scoliosis in Children: A Narrative Review. J Clin Med. 2023 May 24;12(11):3651. doi: 10.3390/jcm12113651. PMID: 37297846; PMCID: PMC10253354.
  2. Fung, A. and Wong, P. C. (2023). Anaesthesia for scoliosis surgery. Anaesthesia &Amp; Intensive Care Medicine, 24(12), 744-750. https://doi.org/10.1016/j.mpaic.2023.09.004
  3. Anaesthetic Guideline  for Posterior Approach to Scoliosis Corrective  Surgery. UCT guideline
  4. Young, C. D., McLuckie, D., & Spencer, A. O. (2019). Anaesthetic care for surgical management of adolescent idiopathic scoliosis. BJA Education, 19(7), 232-237. https://doi.org/10.1016/j.bjae.2019.03.005
  5. Young CD, McLuckie D, Spencer AO. Anaesthetic care for surgical management of adolescent idiopathic scoliosis. BJA Education. 2019;19(7):232-237. pmc.ncbi.nlm.nih.gov
  6. Hudec J, Prokopová T, Kosinová M, Gál R. Anesthesia and perioperative management for surgical correction of neuromuscular scoliosis in children: a narrative review. J Clin Med. 2023;12(11):3651. pmc.ncbi.nlm.nih.gov
  7. Li X et al. The optimal dose of intravenous tranexamic acid for reducing blood loss in multilevel spine surgery: a network meta-analysis. BMC Musculoskelet Disord. 2025;26:8233. bmcmusculoskeletdisord.biomedcentral.com
  8. Madani S et al. Safety and efficacy of tranexamic acid in spinal surgery: a systematic review and meta-analysis. Cureus. 2025;17:e11165496. pmc.ncbi.nlm.nih.gov
  9. Xu H et al. Effects of dexmedetomidine on evoked potentials in spine surgery: a randomised controlled trial. BMC Anesthesiol. 2023;23:1990. bmcanesthesiol.biomedcentral.com
  10. Wang Y et al. Bilateral ultrasound-guided erector spinae plane block improves postoperative analgesia after posterior spinal fusion in paediatric idiopathic scoliosis: a randomised controlled trial. Eur J Anaesthesiol. 2024;41:123-131. pubmed.ncbi.nlm.nih.gov
  11. Wong A et al. Venous thromboembolism prophylaxis in elective spine surgery: a narrative review. Global Spine J. 2021;11(8):1214-1223. pmc.ncbi.nlm.nih.gov
  12. FRCA Mind Maps. (2024). Retrieved June 5, 2024, from https://www.frcamindmaps.org/
  13. Anesthesia Considerations. (2024). Retrieved June 5, 2024, from https://www.anesthesiaconsiderations.com/
  14. Yuan N, et al. Spinal fusion pulmonary management pathway. Johns Hopkins Medicine; 2023. hopkinsmedicine.org
  15. Elsamadicy N, et al. Postoperative pulmonary complications in complex paediatric spine surgery. Pediatr Pulmonol. 2021. pmc.ncbi.nlm.nih.gov
  16. Anderson DE, et al. Multimodal pain control with gabapentin in adolescent posterior spinal fusion: RCT. Spine Deform. 2020;8:177-185. pubmed.ncbi.nlm.nih.gov
  17. Mariscal G, et al. Ketamine for postoperative pain in AIS: meta-analysis. Eur Spine J. 2022;31:3492-3499. pubmed.ncbi.nlm.nih.gov
  18. Gao J, et al. Bilateral ESPB for paediatric posterior fusion: RCT protocol. Trials. 2024;25:498. pmc.ncbi.nlm.nih.gov
  19. Yang X, et al. Cardiac abnormalities in idiopathic scoliosis: risk-factor analysis. Sci Rep. 2025;15:16013. nature.com
  20. van den Bersselaar L, et al. Anaesthetic management in neuromuscular disease. Front Anesthesiol. 2023. pmc.ncbi.nlm.nih.gov

Summaries:
Paediatric scoliosis



Copyright
© 2025 Francois Uys. All Rights Reserved.

id: “54f8b1be-f289-4c8a-a70d-9d2f1e0af0ab”

Please log in to view your notes.

Related article